Seismic activity in the Transantarctic Mountains recorded by the TAMSEIS seismic array.
Abstract
To investigate the links between glaciation and tectonics, we conducted a large-scale seismic deployment in Antarctica that measured local and regional seismicity of both the glaciated terrain of East Antarctica and the non-glaciated Transantarctic Mountains (TAM). The TAM are hypothesized to have formed by rift-flank uplift of the southwestern margin of the West Antarctic Rift System. Active extension of this rift and/or continued uplift of the TAM would likely result in relatively high levels of seismicity along the mountain front. In addition to seismicity from tectonic activity, we suggest that the flow of glaciers, particularly where they accelerate through the TAM, could result in glacier-induced seismicity. We recorded relatively high levels of local seismicity in the TAM. The majority of the seismicity was close to and slightly west of the TAM, beneath the East Antarctic Ice Sheet. We used the double-difference hypocenter location method (Waldhauser and Ellsworth, 2000; Waldhauser 2001) to better image clusters of events. Many of the events are shallow and cluster beneath the David Glacier (which leads to the Drygalski Ice Tongue) and the Darwin Glacier. We suggest that these events are due to fracture at the base of the glaciers, as they steepen towards the coast. We continue to investigate the possibility of surface crevassing and TAM uplift-induced seismicity (along faults which the glaciers have exploited) as the cause of the seismicity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.T11A1225A
- Keywords:
-
- 7230 Seismicity and seismotectonics;
- 8107 Continental neotectonics;
- 1827 Glaciology (1863)