Monitoring Soil Moisture in Saline Soils using Neutron Probe, Time Domain Reflectometry, and Heat Dissipation Sensor Measurements
Abstract
Knowledge of spatial and temporal variability of soil moisture content (SMC) is important for understanding of land-atmosphere interactions, groundwater recharge, and water balance. Different measurement methods have contrasting strengths and weaknesses. Traditional neutron probe measurements cannot be automated and are time-intensive. However, there are widespread problems with using automated time domain reflectometry (TDR) for monitoring SMC due to high soil salinity/electrical conductivity. The objective of this study was to show how these limitations can be overcome by using multiple methods. Neutron probe access tubes, TDR probes (coated and uncoated), and heat dissipation sensors (HDS) were installed at an engineered field laboratory in a semiarid setting. The texture of the soils was sandy clay loam, including 0.3 m of uncompacted topsoil with low salinity and non-swelling clays underlain by 1.0 to 1.7 m of compacted subsoil with high salinity and swelling clays. A neutron probe was used to manually measure SMC profiles at 20 locations at approximately monthly intervals over a 3.5 yr period. During a 4 to 5 yr overlapping period, daily automated measurements were made at 8 locations of apparent dielectric constant (Ka) and bulk electrical conductivity (EC) profiles using TDR (128 probes) and matric potential profiles using HDS (54 sensors). TDR measurements in the high salinity soils were effectively calibrated in situ using neutron probe measurements. Modeled estimates of spatial average water content were generally within 0.01 m3/m3. A similar approach was used to combine neutron probe, TDR, and HDS measurements to generate in situ soil water retention functions. These functions were then used to estimate SMC from matric potential measurements. These approaches allowed SMC to be monitored in high salinity swelling soils and provided much higher resolution time series than were obtained from the limited neutron probe measurements.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.H31D0440R
- Keywords:
-
- 1866 Soil moisture;
- 1875 Unsaturated zone;
- 1894 Instruments and techniques