Natural Arsenic in the Miocene Hawthorn Group, Florida: Wide Ranging Implications for ASR, Phosphate Mining, Private Well
Abstract
In order to understand the mineralogical association and distribution of arsenic (As) in the Hawthorn Group we examined in detail the chemical and mineralogical composition of 370 samples that were collected from 16 cores in central Florida. In our study area the Hawthorn group consists primarily of a basal carbonate unit (the Arcadia Formation) and an upper siliciclastic unit (The Peace River Formation). The Peace River Formation contains appreciable amounts of phosphate and is currently being exploited for phosphate ore. Samples were taken for each Formation at intervals of 25ft. In addition to the interval samples we also took samples that contained visible pyrite crystals, iron oxides, green clays, phosphatic and organic material. These additional samples were collected because of their potential of high As concentrations. Arsenic concentrations were determined by hydride generation - atomic fluorescence spectrometry (HG-AFS) after digestion with aqua regia (3:1 HCl and HNO3). The elements Fe, Na, Al, Si, Mg, Ca, S, P, and K were measured on the same solutions by inductively coupled plasma optical emission spectrometry (ICP-OES). The identification of discrete minerals was aided by scanning electron microscopy (SEM) and chemical compositions were obtained by electron-probe microanalyses (EMPA). Our study indicates that the average As concentrations significantly change from 9.0 ppm in the Peace River Formation to 3.0 ppm in the Tampa Member of the Arcadia Formation. As concentrations for all Hawthorn samples vary from 0.07 to 68.98 ppm ( μ = 5.6, σ = 7.1). Our detailed mineralogical and geochemical study demonstrates that: (1) The As in the Hawthorn group varies from the formation to formation and is mostly concentrated in trace minerals, such as pyrite; (2) Concentrations of the As in pyrite crystals can vary drastically from a minimum of 0 ppm to a maximum of 8260 ppm; (3) Pyrite is an unevenly distributed throughout the Hawthorn Group; (4) Phosphate and organic material, clays, and iron oxides contain lower As concentrations contrasted to pyrite; (5) Pyrite occurs in framboidal and euhedral forms. Because phosphorous, arsenic and sulfur are chemically closely related, they often occur together in nature, thus posing a potential problem for the phosphate industry. There have been several occurrences of swine fatalities due to arsenic poisoning as a result of phosphate feed supplements. Information about the concentration, distribution and mineralogical association of naturally occurring As is important, because this is a first step to forecast its behavior during anthropogenic induced physico-chemical changes in the aquifer. Recently, aquifer storage and recovery (ASR) facilities in central Florida reported As concentrations in excess of 100 μ g/L in recovered water. The ASR storage zone is the Suwannee Limestone, which directly underlies the Hawthorn sediments. It is crucial to the future of ASR in this area to understand the source and distribution of arsenic in the overlying Hawthorn Group and the cycling of arsenic in the Florida platform.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.H21C1032L
- Keywords:
-
- 1831 Groundwater quality;
- 1099 General or miscellaneous