Microbially Induced Reductive Dissolution of Trace Element-Rich Lacustrine Iron-Oxides
Abstract
Iron (oxy)hydroxides are ubiquitous components of surfacial materials and are often the dominant redox buffering solid phases in soils and sediments. As a result, the geochemical behavior of these minerals has a profound influence on the global biogeochemical cycling of trace elements, including heavy metals and arsenic (As), in addition to nutrients such as, sulfur (S), carbon (C), nitrogen (N), and phosphorus (P). Understanding the behavior of trace elements and nutrients during biological and abiotic processes that effect iron (Fe) mineral phase transformations is paramount for predicting their distribution, mobility, and bioavailability in the environment. To evaluate the impact of dissimilatory Fe-reduction (DIR) on trace element mobility we have conducted batch incubations of Fe-rich lateritic lacustrine sediments. In contrast to mid-latitude lakes where Fe (oxy)hydroxides constitute only a small fraction of the total sediment, tropical lake sediments have been known to comprise up to 40-60 wt. % Fe-oxides. Under suboxic and nonsulphidogenic conditions it is likely that DIR plays a prominent role in early diagenesis and therefore may exert control on the fate and distribution of many trace elements in this environment (e.g. Crowe et al. 2004). In batch incubations conducted in a minimal media of similar composition to typical freshwater the lacustrine Fe-oxides were reductively dissolved at a rate very similar to pure synthetic goethite of similar surface area (measured by N2-BET). This is in contrast to the slower rates previously observed for trace element substituted Fe-oxides. These slower rates have been attributed to surface passivation by secondary Al and Cr mineral precipitation. We propose that these passivation effects may be offset in minimal media incubations by enhanced microbial metabolism due the presence of nutrients (P, Co and other metals) in the lacustrine Fe-oxides. These nutrients became available with progressive reduction as the nutrient bearing phases were dissolved. It was found that during DIR many trace elements (e.g. Ni, Mn, Co, Cr, P, and Si) were redistributed between the aqueous and solid phases. However trace element release was not congruent with Fe-oxide dissolution and the maximum aqueous concentrations of Mn, and Co were observed after less than three days of incubation. The rapid release of metals, particularly Co, Mn and Ni, suggest that these elements may be present in discrete phases more readily reduced than the bulk iron (oxy)hydroxides (e.g. MnO2). Cr is initially solubilized but is subsequently removed with progressive Fe reduction. This is consistent with the reduction of aqueous Cr (VI) to Cr (III) by Fe2+. Thus, in natural Fe-oxides there is potential for significant Fe2+ re-oxidation following the release of solid phase oxidants. In summary, our experiments suggest that in lacustrine environments Fe-oxides may be reductively dissolved at higher rates than predicted from laboratory experiments using single-phase pure iron (oxy)hydroxides. The release of the macronutrient phosphorus during DIR may enable sustained reduction in carbon rich anaerobic lake sediments. Furthermore, MnO2 may place a significant role in controlling trace element cycling even in very Fe-rich sediments.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B53C1008C
- Keywords:
-
- 1030 Geochemical cycles (0330);
- 1045 Low-temperature geochemistry;
- 1065 Trace elements (3670);
- 0330 Geochemical cycles;
- 0394 Instruments and techniques