Trace Gas Emissions and Soil C and N Transformations Following Moisture Pulses in Sagebrush: Effects of Invasive and Native Companion Plant Species
Abstract
Simulating water pulses is an important tool for understanding biogeochemical processes in semi arid environments. Global change triggered shifts in plant species composition exert significant control over belowground C and N transformations. They also affect the ecosystem resiliency and its ability to withstand exotic weed invasion. We monitored effects of water additions on trace gas emissions and soil C and N in sagebrush soils, both canopy and shrub interspace, on sites dominated by either native bunchgrass, western wheatgrass, or an exotic annual, cheatgrass. Our results indicate that long-term cheatgrass establishment affects not only soil under its own thatch, but also soil under shrubs within cheatgrass stand. Overall, soil total N and total organic C on cheatgrass sites were lower than these of western wheatgrass. Trace gas measurements of non-wetted soils showed greater N2O and smaller CH4 fluxes compared to western wheatgrass sites. Upon water pulse, cheatgrass soils demonstrated greater CO2 production rates, relative to pre-wet conditions, greater N2O flux per unit soil total N, and more rapid soil microbial biomass C and dissolved organic C response compared to western wheatgrass. Possible mechanisms include faster turnover of microbial biomass and greater nitrification potential of cheatgrass soils.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B51C0963N
- Keywords:
-
- 1615 Biogeochemical processes (4805);
- 0400 Biogeosciences