An approach to decision aid of boreal forest fire control using both of ground observation and remote sensing
Abstract
Burned area of boreal forest fires is increasing in these decades. Two thirds of forest fires are judged as man-made in Siberia. On the other hand, for boreal forest fire emits global warming gas due to combustion and to change of land coverage, forest fire may accelerate global warming. In 2003 summer, 17million hectares are burned in Siberia and CO2 emission is estimated as 3 hundred million tons. Thus, it is important to control forest fire. Toward this aim, we collected data of boreal forest fire in Alaska and east Siberia in summer fire seasons for two years. Data were acquired from each of ground observation, observation from aircraft and remotely sensed fire detection in June and July. Remotely detected fire using some algorisms were compared with observed data to evaluate the accuracy and earliness of automatic detection. Study areas are Alaska and East Siberia in this year and squares of 1000km centered on Yakutsk, Irkutsk and Krasnoyarsk for each in 2003. Daily NOAA and MODIS satellite images are corrected and used for fire detection. 750 ground observation reports are corrected from Russian agency including location, weather and fire front size and severity. 178 reports are corrected from JAL aircraft flying across Siberia including location and time. Comparison between ground truth data and satellite images was done for validation of automatic forest fire detection. Almost all location of ground and aircraft observation data of forest fires as large as 1 hectare were automatically detected at almost same time using satellite images where whether permitting. We are developing connection of fire detection algorithm and fire expansion simulation model to forecast the possible burned area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed.@@On the basis of these analyses, we will discuss some possible utilizations of remotely sensed forest fire to control them.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B51B0944N
- Keywords:
-
- 6309 Decision making under uncertainty;
- 6344 System operation and management;
- 1615 Biogeochemical processes (4805);
- 1630 Impact phenomena;
- 1640 Remote sensing