Trace metal mobility and microbial community structure in tropical soils: examples from adjacent forest and grassland ecosystems
Abstract
Many factors determine the quality and sustainability of a soil environment and changes in land use can impact significantly soil geochemistry and the associated soil microbial communities. Native tropical forests and human-constructed grasslands on Barro Colorado Island provide an excellent setting for comparing changes in soil ecosystems in undisturbed and altered landscapes. The goals of this study were to examine biological, chemical, and mineralogical changes in soil properties as a function of land use changes during the wet and dry seasons. Soil pits were excavated at two study sites, a tropical forest and an adjacent plot that has been converted to grassland, during March 2002 and August 2003. The 1 meter deep pits were sampled at 5 cm intervals and characterized for soil organic matter content, soil moisture, community structure and total lipid biomass of the soil microbial community, mineralogy, and trace metal distribution using a sequential extraction method. Results demonstrate that forested soils exhibit higher organic matter content than grassland soils regardless of soil moisture content. Total lipid biomass of the active soil microbial population decreases with depth in both soils, but is elevated in the forested soil, likely correlating with the organic matter content in this system. Diversity of the soil microbial community, determined by PLFA analysis, decreases sharply at the base of the root zone and general trends in community structure are similar in both soils. XRD analysis of the soils reveal that the weathering profile in the forest has extended to a greater depth, but these differences in the mineralogy profile do not exert significant control on trace element mobility. Vanadium, copper, zinc, and aluminum show strong affinities for the organically bound fraction in both soils.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B21C0902W
- Keywords:
-
- 1045 Low-temperature geochemistry;
- 1065 Trace elements (3670);
- 0400 Biogeosciences