Behavior of rare earth and trace elements in Lake Tanganyika and its three major tributaries
Abstract
Water samples were collected, during the rainy and dry seasons 2003, from three major rivers and several locations of the Lake Tanganyika. They were directly filtered (0.45 im pore size) into pre-washed polyethylene bottles, and acidified at pH 2. Finnigan Element 2 high resolution (HR)-IC-MPS was used to measure trace and rare earth elements (REE) concentrations under clean laboratory conditions, and (115In) was used as an internal standard. Because of the close relationship between light rare earth element (LREE) and Fe, riverine REE of the three were used to study the process trace element scavenging by Fe oxyhydroxides in three different two sub-basins of the lake. This confirmed by the significant positive correlation between Nd and Fe. The vertical distribution of Fe and Mn oxides were also used to investigate removal and release of trace elements in the water column. The normalized lacustrine REE to their riverine counterpart showed a gradual removal of REE across the lake, which was in the order of LREE>MREE>HREE. Hence, the rivers are the sole source of the lacustrine REE abundance. Coincidence of Fe maxima with those of Ce anomalies and La indicates that trace element profiles are chiefly controlled by the coating of Fe oxyhydroxides through oxidation of Fe2+ to Fe3+ under high dissolved oxygen contents and pH and vice versa. Due to differences in hydrodynamics between the extreme ends of the lake (upwelling in the southern end during the dry season), high mixing between bottom water and surface was observed at the surface in the Southern Basin while the mixing occurred mainly between 40 m and 80 m depth in the Northern Basin. There was also a clear similarity between Ba and NO3- and PO43- profiles in the southern end of the lake, supporting the idea that deep anoxic water, rich in nutrients and trace elements, are bought the surface during this period of intensive upwelling. In conclusion, the surface water chemical compositions of Lake Tanganyika are controlled by fluvial inputs and the seasonal changes in hydrodynamics across the lake.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B21B0895S
- Keywords:
-
- 4851 Oxidation/reduction reactions;
- 4283 Water masses;
- 1806 Chemistry of fresh water;
- 1848 Networks