Urbanization, Forest Vulnerability and Resource Land Loss in the Chesapeake Bay Watershed
Abstract
The contemporary pattern of urban development in industrialized countries is increasingly taking the form of low density, decentralized residential and commercial development. In the Chesapeake Bay watershed, which is located within the mid-Atlantic region of the United States, dispersed development patterns have been linked to habitat fragmentation and declining water quality. Our objectives were to document how this urbanization process has expanded throughout the watershed and to explore how lands comprising the natural resource base, particularly forests, have been replaced by a matrix of the built environment. We accomplished this by mapping impervious surface cover (houses, roads, etc) across the ~168,000 km2 area using a time series of satellite imagery. We calculated metrics of land use change and used these to estimate the loss of resource lands across the region. We conservatively estimate that 334 km2 of forest, 888 km2 of agriculture and 2 km2 of wetlands have been converted to impervious surfaces between 1990 and 2000. We also used the time series to calibrate a spatial model of urban land use change, and forecasted future development patterns in Maryland out to 2030 under different policy scenarios. Using Maryland Department of Natural Resources' (DNR) Strategic Forest Lands Assessment (SFLA), which evaluates forest resources in terms of their economic and ecologic value, and Maryland's Green Infrastructure, which identifies ecologically valuable patches of contiguous forests and wetlands, we evaluated the vulnerability of natural resources in Maryland. Threats associated with loss and fragmentation were identified.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B11B0149J
- Keywords:
-
- 9810 New fields (not classifiable under other headings);
- 6309 Decision making under uncertainty;
- 6334 Regional planning;
- 1640 Remote sensing