A Simple and Effective Image Normalization Method to Monitor Boreal Forest Change in a Siberian Burn Chronosequence across Sensors and across Time
Abstract
Satellite data offer unique perspectives for monitoring and quantifying land cover change, however, the radiometric consistency among co-located multi-temporal images is difficult to maintain due to variations in sensors and atmosphere. To detect accurate landscape change using multi-temporal images, we developed a new relative radiometric normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on 9 June 1990 (Landsat 4), 20 June 2000, and 26 August 2001 (Landsat 7) for analyses over boreal forests near the Siberian city of Krasnoyarsk. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Reduced Simple Ratio (RSR) were investigated in the normalization study. The temporally invariant cluster (TIC) centers were identified through a point density map of the base image and the target image and a normalization regression line was created through all TIC centers. The target image digital data were then converted using the regression function so that the two images could be compared using the resulting common radiometric scale. We found that EVI was very sensitive to vegetation structure and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. NDVI was a very effective vegetation index to reduce the influence of shadow, while EVI was very sensitive to shadowing. After normalization, correlations of NDVI and EVI with field collected total Leaf Area Index (LAI) data in 2000 and 2001 were significantly improved; the r-square values in these regressions increased from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI ¡°cancellation effect¡± where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared with some previous relative normalization methods, this new method can avoid subjective selection of a normalization regression line. It does not require high level programming and statistical analyses, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.B11B0144C
- Keywords:
-
- 1640 Remote sensing;
- 0360 Transmission and scattering of radiation;
- 0400 Biogeosciences;
- 0840 Evaluation and assessment;
- 0910 Data processing