Abstract
We present a spectral analysis of the Seyfert 1.8 ESO 113-G010 observed with XMM-Newton for 4 ks. The spectrum shows a soft excess below 0.7 keV and more interestingly a narrow emission Gaussian line at 5.4 keV (in its rest-frame), most probably originating from a redshifted iron Kα line. No significant line at or above 6.4 keV is found contrary to other objects showing redshifted lines, ruling out a strong blue-wing to the line profile. The line is detected at 99% confidence, from performing Monte Carlo simulations which fully account for the range of energies where a narrow iron line is likely to occur. The energy of the line could indicate emission from relativistic (0.17-0.23 c) ejected matter moving away from the observer, as proposed for Mrk 766 by Turner et al. (\cite{Tu04}, ApJ, 603, 62). Alternatively, the emission from a narrow annulus at the surface of the accretion disk is unlikely due to the very small inclination angle (i.e. less than 10°) required to explain the narrow, redshifted line in this intermediate Seyfert galaxy. However emission from a small, localized hot-spot on the disk, occurring within a fraction of a complete disk orbit, could also explain the redshifted line. This scenario would be directly testable in a longer observation, as one would see significant variations in the energy and intensity of the line within an orbital timescale.