A stochastic model for the stepwise motion in actomyosin dynamics
Abstract
A jump-diffusion process is proposed to describe the displacements performed by single myosin heads along actin filaments during the rising phases. The process consists of the superposition of a Wiener and a jump process, with jumps originated by sequences of Poisson-distributed energy-supplying pulses. In a previous paper, the amplitude of the jumps was described by a mixture of two Gaussian distributions. To embody the effects of ATP hydrolysis, we now refine such a model by assuming that the jumps' amplitude is described by a mixture of three Gaussian distributions. This model has been inspired by the experimental data of T. Yanagida and his co-workers concerning observations at single molecule processes level.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2003
- DOI:
- arXiv:
- arXiv:cond-mat/0305115
- Bibcode:
- 2003cond.mat..5115B
- Keywords:
-
- Soft Condensed Matter;
- Statistical Mechanics
- E-Print:
- 9 pages, 4 figures