Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type A receptors at low concentrations known to affect humans
Abstract
γ-Aminobutyric acid type A receptors (GABARs) have long been implicated in mediating ethanol (EtOH) actions, but so far most of the reported recombinant GABAR combinations have shown EtOH responses only at fairly high concentrations (≥60 mM). We show that GABARs containing the δ-subunit, which are highly sensitive to γ-aminobutyric acid, slowly inactivating, and thought to be located outside of synapses, are enhanced by EtOH at concentrations that are reached with moderate, social EtOH consumption. Reproducible ethanol enhancements occur at 3 mM, a concentration six times lower than the legal blood-alcohol intoxication (driving) limit in most states (0.08% wt/vol or 17.4 mM). GABARs responsive to these low EtOH concentrations require the GABAR δ-subunit, which is thought to be associated exclusively with α4- and α6-subunits in vivo, and the β3-subunit, which has recently been shown to be essential for the in vivo anesthetic actions of etomidate and propofol. GABARs containing β2-instead of β3-subunits in α4βδ- and α6βδ-receptor combinations are almost 10 times less sensitive to EtOH, with threshold enhancement at 30 mM. GABARs containing γ2-instead of δ-subunits with α4β and α6β are three times less sensitive to EtOH, with threshold responses at 100 mM, a concentration not usually reached with social EtOH consumption. These combined findings suggest that "extrasynaptic" δ-subunit-containing GABARs, but not their "synaptic" γ-subunit-containing counterparts, are primary targets for EtOH.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- December 2003
- DOI:
- 10.1073/pnas.2435171100
- Bibcode:
- 2003PNAS..10015218W
- Keywords:
-
- Pharmacology