Alkalic magmas generated by partial melting of garnet pyroxenite
Abstract
Many oceanic-island basalts (OIBs) with isotopic signatures of recycled crustal components are silica poor and strongly nepheline (ne</em>) normative and therefore unlike the silicic liquids generated from partial melting of recycled mid-oceanic-ridge basalt (MORB). High-pressure partial-melting experiments on a garnet pyroxenite (MIX1G) at 2.0 and 2.5 GPa produce strongly ne</em>-normative and silica-poor partial melts. The MIX1G solidus is located below 1350 and 1400 °C at 2 and 2.5 GPa, respectively, slightly cooler than the solidus of dry peridotite. Chemographic analysis suggests that natural garnet pyroxenite compositions straddle a thermal divide. Whereas partial melts of compositions on the silica-excess side of the divide (such as recycled MORB) are silica saturated, those from silica-deficient garnet pyroxenites can be alkalic and have similarities to low-silica OIB. Although the experimental partial melts are too rich in Al2O3 to be parental to highly undersaturated OIB suites, higher-pressure (4 5 GPa) partial melting of garnet pyroxenite is expected to yield more appropriate parental liquids for OIB lavas. Silica-deficient garnet pyroxenite, which may originate by mixing of MORB with peridotite, or by recycling of other mafic lithologies, represents a plausible source of OIB that may resolve the apparent contradiction of strongly alkalic composition with isotopic ratios characteristic of a recycled component.
- Publication:
-
Geology
- Pub Date:
- June 2003
- DOI:
- 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
- Bibcode:
- 2003Geo....31..481H