The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests
Abstract
Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic pH and high chloride concentrations, simulated gastric fluids are most efficient at solubilizing metals such as Hg, Pb, Zn, and others that form strong chloride complexes; although these metals tend to partially reprecipitate in the near-neutral simulated intestinal fluids, complexes with organic ligands (i.e., amino and carboxylic acids) enhance their solubility. These metals are also quite soluble in near-neutral, protein-rich plasma-based fluids because they form strong complexes with the proteins. In contrast, metalloids that form oxyanion species (such as As, Cr, Mo, W) are commonly more soluble in near-neutral pH simulated lung fluids than in simulated gastric fluids.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.V51D0316P
- Keywords:
-
- 0305 Aerosols and particles (0345;
- 4801);
- 0345 Pollution: urban and regional (0305);
- 0400 Biogeosciences;
- 9810 New fields (not classifiable under other headings)