High sensitivity in-situ analysis of light lithophile (Li, Be, B) and alkali (Rb, Cs) elements by laser ablation magnetic sector ICP-MS: application to back arc basin magmatism
Abstract
Light lithophile (B, Be, Li) and alkali elements (Rb, Cs) provide many constraints on the origin and evolution of primitive magmatic rocks. However these elements are often present at low abundances, requiring large sample volumes, and may be strongly effected by alteration or sample contamination. We have developed a technique for rapid, in-situ, analysis of B, Be, Li, Rb and Cs abundances in glasses, glass inclusions and minerals using laser ablation microsampling and analysis by magnetic sector ICP-MS. By coupling the high sensitivity, dynamic range and low backgrounds of the ICP-MS with the speed and minimal sample preparation requirements of laser ablation, we can analyze these elements with detection limits that rival many solution-based techniques in ~60 s and using << 200 ng of material. Analyses are conducted using a NewWave DUV 193 nm ArF Excimer laser system, with He carrier gas. Samples were ablated at energies of 10-12 mJ/cm2 with pulse rates between 2-5 hz, and by either translating a 50 μ m laser spot over the surface at a rate of 5 μ m/s or by maintaining a stationary 50-70 μ m spot. Ablated material was analyzed with a VG Axiom single collector ICP-MS using a high-sensitivity sampler cone. All peaks were checked at high mass resolving power for molecular interferences, and analyses were conducted at low resolving power to maximize transmission. Careful monitoring of backgrounds was required for low-abundance measurements. Calculated detection limits are 1-2 ppb (Cs, Be), 5-10 ppb (Li) and 15-20 ppb (B, Rb). Surface contamination was removed with a pre-analysis ablation pass, and the small size of the laser spot allowed us to avoid altered and devitrified areas. Analysis of standard glasses showed excellent agreement with accepted values and repeat analyses suggest external errors are typically < 5-10%. Glasses from the Lau Basin show strong enrichments in B, Rb and Cs that correlate with a slab-fluid signature. B, Be Rb and Cs contents are very low in MORB-like samples from the north of the basin but are enriched in evolved lavas from propagating ridge tips.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.V51A..06K
- Keywords:
-
- 1025 Composition of the mantle;
- 1094 Instruments and techniques;
- 3670 Minor and trace element composition