An alternative model for within plate basalts generation suggested by their major elements, trace elements and Pb-Sr-Nd isotope compositions
Abstract
Based on geochemistry, the recent favor model for within-plate basalts (WPB) is plumes with eclogite originally formed by inversion of basaltic oceanic crust into eclogite in subduction zones (e.g. Hauri, 1996). Melting experiments of basalt/peridotie hybrids (Kogiso and Takahashi, 1998), however, have demonstrated that the hybrid source model could not explain major element features of WPB, such as FeO* enrichment and Al2O3 depletion compared with MORB. Melting experiments of peridotites and basalt/peridotite hybrids indicate that the sources of WPB are peridotites abnormally enriched in FeO*. Such Fe-rich sources could not be formed by extraction of basalt melt from typical peridotite or mixing of basalt and typical peridotite. A potential candidate for the abnormally Fe-rich source is Archean peridotitic komatiite (APK) which is enriched in FeO* compared with typical peridotite. Attractive features of the recycled APK melting model are as follows: 1) It explains why within-plate basalts are FeO*-rich and Al2O3-poor relative to MORB because of large proportion of cpx in APK. 2) Moderate partial melting of APK forms LREE-enriched partial melts because of selective fusion of cpx. 3) It explains near bulk earth Nd isotope compositions because of relatively flat REE patterns of APK. 4) Archean age of APK is consistent with Pb isotope ofWPB suggesting their sources have Archean age. 5) Compositional spectrum of Archean komatiite suites ranging from peridotitic komatiite to basalts explains that of WPB from silica-under saturated basalt to silica-oversaturated andesite.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.V12C0609M
- Keywords:
-
- 3600 MINERALOGY AND PETROLOGY (replaces;
- 3640 Igneous petrology;
- 3655 Major element composition;
- 3670 Minor and trace element composition