Displacement Addition on Linking Extensional Fault Arrays in the Canyonlands Graben, Utah
Abstract
Studies of brittle fault populations over the past decade have revealed that large extensional faults grow by the lengthening, interaction and physical linkage of en echelon fault segments. However, the temporal evolution of displacement accumulation during segment interaction and linkage is difficult to unravel due to a lack of direct observation during each stage in the fault array development. The process of profile re-adjustment prevents reconstruction of the growth history of a fault from its final configuration, and as a result, several models for the growth trajectory of a fault array undergoing linkage are possible. Observational data with which to constrain the relative timing and mode of displacement accumulation during the linkage process are currently lacking. We use the deformation of late Pleistocene-Holocene stream systems by the growth of a active normal faults in The Grabens, Canyonlands National Park, Utah to constrain the mode of growth of fault arrays. Coupling fault displacement data with geomorphic analysis of deformed present-day and palaeo-streams, permits sequential reconstruction of both simple 2-segment fault arrays and complex multi-segment populations from their initial component segments to the present day displacement geometry. In particular, these data provide information on the relative rates of displacement addition. For example, the presence of waterfalls where streams cross fault scarps indicates abrupt rates of displacement accumulation which we can relate to the hard linkage process. The reconstruction of both three- and six-segment faults reveal common aspects of displacement distribution through time: (1) Displacement accumulation occurs almost entirely in the interaction and linkage phase. (2) Interaction between segments causes enhanced displacement addition in overlap zones. (3) Despite interaction in the soft-linkage stage, faults do not achieve a characteristic profile during this phase (4) Displacement accrues rapidly immediately following linkage, and recovery to a standard D-l profile is gained through this process. (5) The locus of displacement accumulation is not fixed in time; the central fault segment does not always experience the greatest displacement enhancement. Preliminary results of cosmogenic 10Be exposure dating of bedrock with quartz from the Permian Cedar Mesa Sandstone indicate recent (<10ka) timing of rapid displacement addition on linking faults.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.T22A0500C
- Keywords:
-
- 1824 Geomorphology (1625);
- 8109 Continental tectonics: extensional (0905)