EGF Search for Compound Source Time Functions in Microearthquakes
Abstract
Numerical simulations of stopping ruptures on bimaterial interfaces seem to indicate a pronounced asymmetry in the time it takes to reach the peak Coulomb stress shortly beyond the rupture ends. For the rupture front moving in the direction of slip of the stiffer medium, the timescale is controlled by the arrival of stopping phases from the opposite side of the crack, but for the opposite rupture front this timescale is controlled by the much shorter-duration tensile stress pulse that moves in front of the crack tip as it slows down. This behavior may have implications for rupture complexity on bimaterial interfaces. In addition to observing an asymmetry in aftershock occurrence on the San Andreas fault, Rubin and Gillard (2000) noted that for all 5 of the compound earthquakes they observed in a cluster of 72 events, the second subevent occurred to the NW of the first (that is, near the rupture front moving in the direction of slip of the stiffer medium). They suggested that these 5``second events'' were simply examples of ``early aftershocks'' which also occur preferentially to the NW; however, the fact that these 5 earthquakes could not be recognized as compound at stations located to the SE indicates that the second event actually occurred on the timescale of the passage of the dynamic stress waves. Thus, observations of asymmetry in rupture complexity may form an independent dataset, complimentary to observations
of aftershock asymmetry, for constraining models of rupture on bimaterial interfaces. Microseismicity recorded on dense seismological networks has proved interesting for earthquake physics because the high number of events allows one to gain statistical insight into the observed source properties. However, microearthquakes are usually so small that the range of methods that can be applied to their analysis is limited and of low resolution. To address the questions raised above we would like to characterize the source time functions (STF) of a large number of microearthquakes, in particular the statistics of compound events and the possible asymmetry of their spatial distribution. We will show results of the systematic application of empirical Green's function deconvolution methods to a large dataset from the Parkfield HRSN. On the methodological side the performance and robustness of various deconvolution schemes is tested. These range from trivially stabilized spectral division to projected Landweber and blind deconvolution. Use is also made of the redundance available in highly clustered seismicity with many similar seismograms. The observations will be interpreted in the light of recent numerical simulations of dynamic rupture on bimaterial interfaces (see abstract of Rubin and Ampuero).- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.S52H..02A
- Keywords:
-
- 7209 Earthquake dynamics and mechanics