The FAMEX Cruise off Baja California (March/April 2002) : Preliminary Results
Abstract
The pioneering work on spreading-ridge subduction (Dickinson and Snyder, 1979) describes the evolution of slab geometry beneath southwestern US and northwestern Mexico since the Middle Miocene. This work develops the slab-window concept and the tectonic and magmatic effects of the slab-free geometry on the Cordilleran system. Because no ridge-subduction was proposed to have occurred south of 30°N (Lonsdale, 1991), question arose as to whether a slab-free area also extended beneath southern Baja California. The Chile triple junction area (46°S) is a well-studied example of active ridge-subduction. This area exhibits the effects of slab-free development on the time distribution of magmatism and tectonism within the overriding continental block. Moreover, recent fieldwork conducted along the southern Baja California volcanic belt supports that slab melting under relatively shallow and warm conditions occurred during Upper Miocene time. When combined with the Miocene-Recent volcanic record of Baja California, a parallel drawn between the Chile and Mexico triple junction areas substantiates slab window development beneath southern Baja California peninsula during the past 12-10 m.y. The FAMEX cruise of the R/V Atalante (March-April 2002) was conducted to better constrain the ridge-subduction history in the area off southern Baja California. More than 5000 miles of swath bathymetry, magnetic, gravity record and 6 channels seismic reflection profiles were realized from 29°N to 22°30'N. Also, three magnetic deep-tow profiles were performed to provide a higher resolution of the magnetic signal and age of the corresponding oceanic crust. The study area displays two distinct morphological areas: (1) north of 27°30'N, the Guadalupe rift is a deep trough that trends roughly N-S. On either sides of the rift, the neighboring oceanic fabric trends parallel to it; (2) south of 27°N, the oceanic fabric is much more complicated and strongly contrasts with the regular fabric observed along the Guadalupe rift. In this area, 80-km-long fossil spreading centers trending NNE-SSW were identified. The Shirley fracture zone (SFZ) bounds these two areas characterized by deeply different oceanic fabrics. The SFZ corresponds to a complex broad zone where several narrow straight bathymetric troughs are observed which can be related to distinctive deformation stages. We suggest that the complex morphological signature of the oceanic crust south of the SFZ could be related to local reorganizations associated with ridge-subduction processes. Dickinson W.R. and Snyder W.S., 1979, JGR, 84, 561-572. Lonsdale, P., 1991, in Dauphin, J.P., and Simoneit, B.R.T., eds., AAPG Memoir, 47, 87-125.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.T52A1186M
- Keywords:
-
- 3000 MARINE GEOLOGY AND GEOPHYSICS;
- 8150 Plate boundary: general (3040)