Extended QCD versus SkyrmeFaddeev theory
Abstract
We discuss the physical impact of the ``Cho decomposition'' (or the ``ChoFaddeevNiemiShabanov decomposition'') of the nonAbelian gauge potential on QCD. We show how the decomposition makes a subtle but important modification on the nonAbelian dynamics, and present three physically equivalent quantization schemes of QCD which are consistent with the decomposition. In particular, we show that the decomposition enlarges the dynamical degrees of QCD by making the topological degrees of the nonAbelian gauge symmetry dynamical. Furthermore with the decomposition we show that the SkyrmeFaddeev theory of the nonlinear sigma model and QCD have almost identical topological structures. In specific we show that an essential ingredient in both theories is the WuYangtype nonAbelian monopole, and that the FaddeevNiemi knots of the SkyrmeFaddeev theory can actually be interpreted to describe the multiple vacua of the SU(2) QCD. Finally we argue that the SkyrmeFaddeev theory is, just like QCD, a theory of confinement which confines the magnetic flux of the monopoles.
 Publication:

Physical Review D
 Pub Date:
 January 2002
 DOI:
 10.1103/PhysRevD.65.025005
 arXiv:
 arXiv:hepth/0105163
 Bibcode:
 2002PhRvD..65b5005B
 Keywords:

 12.38.Lg;
 11.10.Lm;
 12.38.Aw;
 Other nonperturbative calculations;
 Nonlinear or nonlocal theories and models;
 General properties of QCD;
 High Energy Physics  Theory
 EPrint:
 15 pages