Prebiotic synthesis from CO atmospheres: Implications for the origins of life
Abstract
Most models of the primitive atmosphere around the time life originated suggest that the atmosphere was dominated by carbon dioxide, largely based on the notion that the atmosphere was derived via volcanic outgassing, and that those gases were similar to those found in modern volcanic effluent. These models tend to downplay the possibility of a strongly reducing atmosphere, which had been thought to be important for prebiotic synthesis and thus the origin of life. However, there is no definitive geologic evidence for the oxidation state of the early atmosphere and bioorganic compounds are not efficiently synthesized from CO2 atmospheres. In the present study, it was shown that a CO-CO2-N2-H2O atmosphere can give a variety of bioorganic compounds with yields comparable to those obtained from a strongly reducing atmosphere. Atmospheres containing carbon monoxide might therefore have been conducive to prebiotic synthesis and perhaps the origin of life. CO-dominant atmospheres could have existed if the production rate of CO from impacts of extraterrestrial materials were high or if the upper mantle had been more reduced than today.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- November 2002
- DOI:
- Bibcode:
- 2002PNAS...9914628M