Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron
Abstract
Tetragonal FeS1-x mackinawite, has been synthesized by reacting metallic iron with a sodium sulfide solution and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), transmission Mössbauer spectroscopy (TMS) and X-ray photoelectron spectroscopy (XPS). Based on XRD and TEM analyses, synthetic mackinawite exhibits crystallization and is identical to the natural mineral. Unit cell parameters derived from XRD data are a = b = 0.3670 nm and c = 0.5049 nm. The bulk Fe:S ratio derived from the quantitative dispersive energy analysis is practically 1. XPS analyses, however, showed that mackinawite surface is composed of both Fe(II) and Fe(III) species bound to monosulfide. Accordingly, monosulfide is the dominant S species observed at the surface with lesser amount of polysulfides and elemental sulfur. TMS analysis revealed the presence of both Fe(II) and Fe(III) in the mackinawite structure, thus supporting the XPS analysis. We propose that the iron monosulfide phase synthesized by reacting metallic iron and dissolved sulfide is composed of Fe(II) and S(-II) atoms with the presence of a weathered thin layer covering the bulk material that consists of both Fe(II) and Fe(III) bound to S(-II) atoms and in a less extent of polysulfide and elemental sulfur.
- Publication:
-
Geochimica et Cosmochimica Acta
- Pub Date:
- March 2002
- DOI:
- 10.1016/S0016-7037(01)00805-5
- Bibcode:
- 2002GeCoA..66..829M