Full Three-Dimensional Approach: Seismic Structure of the Mantle Beneath Western Pacific Using 3-D Fréchet Kernels
Abstract
We present a full three-dimensional (3-D) model of the shear-speed structure for the mantle beneath western Pacific Ocean. Over 800 three-component recordings of earthquakes (Mw > 5.5) from the seismic zones around the western Pacific rim to station HON/KIP in Hawaii, MIDW in Midway, MAT/MAJO and ERM in Japan, and GUMO in Mariana Island were processed to obtain ~20,000 frequency-dependent phase delays for various of seismic waves, including S, SS, upper-mantle guided and surface waves, and ScS reverberations. The 3-D Fréchet kernels for these delay times are computed by the coupled normal mode theory described by Zhao, Jordan, and Chapman (2000), and the measurements were inverted for a 3-D radially anisotropic shear-speed model using a linear Gaussian-Bayesian scheme. The model parameters include shear-speed variations throughout the mantle and perturbations to radial shear-wave anisotropy in the uppermost mantle. The resolving power of the inversion has been investigated through a series of checkerboard and other tests, which indicate that the horizontal and vertical resolving lengths of about 700 and 200 km or less in the upper mantle. Our results for the large-scale variations in the isotropic shear speeds are generally consistent with published global tomographic models. For example, the uppermost mantle (< 200 km depth) shows fast anomalies in the interior of the Pacific plate and slow anomalies in the marginal basins along the Pacific rim, while this pattern is reversed in the transition zone (400-700 km). Our model reveals greater lateral heterogeneity than the global models, especially in the 200-400 km depth range, suggesting a complex 3-D mantle flow in the western Pacific upper mantle.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.S51A1038C
- Keywords:
-
- 7218 Lithosphere and upper mantle