Graphite as a Biomarker in Rocks of the 3.8 Ga Isua Supracrustal Belt
Abstract
Recent petrographic and isotopic studies of graphite and apatite in supracrustal rocks from the 3.8 Ga Isua belt (ISB) in southern West Greenland [1, 2] have shown inconsistencies in interpreting traces of life in the earliest terrestrial sediment record. Isotopically light graphitic carbon, suggestive of a bioorganic origin, has been previously reported from the carbonate-rich Isua rocks [3, 4] that at the time were recognized as sedimentary deposits. However, these carbonate-rich rocks, that provided the basis for original biologic interpretations, have been shown to have a metasomatic origin [5] not sedimentary as previously believed. This protolith reinterpretation has highlighted the need for assessment of graphite genesis and related isotopic systematics when using graphite as an ancient biomarker. We have, for this purpose, studied graphite in a suite of samples from the ISB including metacarbonates, turbidites, cherts and banded iron formations (BIFs). Graphite is relatively abundant (0.1-2 wt. %) in metacarbonate samples, while the abundances of reduced carbon in metasedimentary BIFs and metacherts are below 100 ppm. Petrographic analyses show that graphite in metacarbonates typically associates with Fe-bearing carbonate and magnetite. This mineral association indicates graphite formation in Isua metacarbonates by thermal-metamorphic reduction of carbonate ion, in which the carbonate ion is reduced to form graphite and ferrous iron is oxidized to form magnetite. Carbon isotopic compositions of graphite (δ13C ca. -2 per mil) and associated Fe-carbonate (δ13C ca. -6 per mil) indicate isotopic equilibrium between these two phases at ca. 500 C, consistent with the metamorphic history of the ISB. Stepped-combustion experiments undertaken on Isua BIFs and metacherts reveal that these sediments contain virtually no graphite, and the small amount of reduced carbon found there represents recent organic contamination. Our stepped-combustion-mass-spectrometry data demonstrate that previous isotopic results on graphite deficient Isua rocks obtained by single step combustion are unreliable. The proposed biologic significance of graphite occurring as inclusions in apatite [4] in Isua rocks is not supported by our findings because such graphite-apatite association can only be found in biologically irrelevant metacarbonate rocks. The isotopic systematics of the epigenetic processes responsible for formation of isotopically light graphite enclosed in apatite crystals [4] will be discussed, integrating new ion microprobe isotope data on graphite in apatite and other mineral phases occurring in Isua metacarbonates. References: [1] van Zuilen, M., Lepland, A. and Arrhenius, G., 2002. Reassessing the evidence for the earliest traces of life. Nature 418: 627-630. [2] Lepland, A., Arrhenius, G. and Cornell, D. in press. Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precam. Res. [3] Schidlowski, M., 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333: 313-318. [4] Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. and Friend, C.R.L., 1996. Evidence for life on Earth before 3800 million years ago. Nature 384: 55-59. [5] Rosing, M.T., Rose, N.M., Bridgwater, D. and Thomsen, H.S., 1996. Earliest part of Earth's stratigraphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geol. 24: 43-46.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.P71C0475L
- Keywords:
-
- 1030 Geochemical cycles (0330);
- 1040 Isotopic composition/chemistry;
- 1094 Instruments and techniques;
- 1615 Biogeochemical processes (4805);
- 8125 Evolution of the Earth