The origin of stellar, planetary, satellite and galactic rotation as tangential accretion of decaying orbital torus sections of relevant material transferring orbital momentum into rotational motion of the accreted body.
Abstract
The origin of planetary, satellite and stellar rotation is due to tangential accretion of orbiting torus sections of material which decay.In the case of the sun and other stars torus sections of mostly hydrogen gas are held together by magnetic and electric fields,and in the case of the planets, gaseous and rocky,torus sections are of relevant material such as gases as methane and ammonia and rocky materials such as silicatesheld together also by magnetic and electric fields. The torus section orbits decay due to slowing down and by gravitational attraction tangentially collide with a protoplanet or protostar such as the sun. The orbital motion of the torus section is transferred to the slowly rotating protoplanet in tangential accretion thereby speeding up the rotation of the protoplanet or star. This is a transfer of orbital motion into rotary motion through tangential collision. The evidence for this is the differential layering of the body of a planet or star.The origin of the torus sections is the Big Bang. Galactic formation in part is due to already formed arms in slowly decaying orbital motion which tangentially collide with other already formed arms into spiral and barred spiral galaxies in which the rotation resulted from orbital motion being converted to rotary motion. Rotation of spiral galaxies slows down and the spirals change into ellipticals. All of this was seen in a coffee cup when some old creamer was put into it. Elliptical Galaxies do actually spin slower than Spirals. Therefore, all heavenly bodies are rotating at their present speed due to tangential collision and accretion of already formed arms of material in which orbital motion is converted into rotary motion in which there may be some slowing down over time.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.P22C0414B
- Keywords:
-
- 5450 Orbital and rotational dynamics;
- 5455 Origin and evolution;
- 5744 Orbital and rotational dynamics;
- 5749 Origin and evolution;
- 6207 Comparative planetology