Dynamic Data Integration Using Streamline Models
Abstract
Recent developments in petroleum reservoir characterization and in the management of uncertainty have lead to the ability of the industry to routinely generate large multimillion-cell detailed geologic models. Reconciling such high-resolution models to dynamic reservoir behavior (transient pressure and tracer response, multiphase production history) still remains an outstanding challenge because of the high computational costs associated with the solution of large inverse problems. Streamline-based flow simulation models can offer significant potential in this regard. In this presentation we will exploit an analogy between streamlines and seismic ray tracing to develop an efficient formalism for dynamic data integration into high-resolution subsurface models. Utilizing concepts from the asymptotic ray theory in seismic and diffusive electromagnetic imaging, we will generalize the streamline approach to incorporate transient pressure, tracer and multiphase production response during subsurface characterization. Data integration will be carried out in a manner analogous to seismic tomography and waveform imaging by first matching the `arrival time' and then the `amplitude' of the production response. Several field examples from the oil field and environmental applications will demonstrate the practical feasibility of the approach.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.H52F..04D
- Keywords:
-
- 1829 Groundwater hydrology;
- 1831 Groundwater quality;
- 1869 Stochastic processes