Modeling the Cienega de Santa Clara, Sonora, Mexico
Abstract
The Cienega de Santa Clara is a created wetland located in the Colorado River Delta (CRD), in Sonora, Mexico. It is sustained by agricultural return flows from the Wellton-Mohawk Irrigation District in Arizona and the Mexicali Valley in Mexico. As one of the few wetlands remaining in the CRD, it provides critical habitat for several species of fish and birds, including several endangered species such as the desert pupfish (Cyprinodon macularius) and the Yuma clapper rail (Rallus longirostris yumanensis). However, this habitat may be in jeopardy if the quantity and quality of the agricultural inflows are significantly altered. This study seeks to develop a model that describes the dynamics of wetland hydrology, vegetation, and water quality as a function of inflow variability and salinity loading. The model is divided into four modules set up in sequence. For a given time step, the sequence begins with the first module, which utilizes basic diffusion equations to simulate mixing processes in the shallow wetland when the flow and concentration of the inflow deviate from the baseline. The second module develops a vegetated-area response to the resulting distribution of salinity in the wetland. Using the new area of vegetation cover determined by the second module and various meteorological variables, the third module calculates the evapotranspiration rate for the wetland, using the Penman-Montieth equation. Finally, the fourth module takes the overall evapotranspiration rate, along with precipitation, inflow and outflow and calculates the new volume of the wetland using a water balance. This volume then establishes the initial variables for the next time step. The key outputs from the model are salinity concentration, area of vegetation cover, and wetland volume for each time step. Results from this model will illustrate how the wetland's hydrology, vegetation, and water quality are altered over time under various inflow scenarios. These outputs can ultimately be used to assess the impacts to wetland wildlife and overall ecosystem health, and to determine the best management strategy for the Cienega de Santa Clara.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.H21A0784H
- Keywords:
-
- 1818 Evapotranspiration;
- 1871 Surface water quality;
- 1890 Wetlands