Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns
Abstract
Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to calibrate the biomass attachment and detachment terms used in the model. Column data collected with Cr(VI) in the influent was used to calibrate the model. The modeling results indicate that the Cr(VI) and substrate predictions match closely with the column data. The calibrated model was also able to match attached biomass profiles within the column as well as aqueous biomass in the effluent.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.B72B0765Q
- Keywords:
-
- 1894 Instruments and techniques;
- 4803 Bacteria;
- 4840 Microbiology;
- 4842 Modeling;
- 4845 Nutrients and nutrient cycling