Biogenic Emission Inventories: Scaling Local Biogenic Measurements to Regions
Abstract
Biogenic Hydrocarbons, such as isoprene, are important trace gas species that are naturally emitted by vegetation and that affect the oxidative capacity of the atmosphere. Biogenic emissions are regulated by many environmental variables; the most important variables are thought to be temperature and light. Long-term isoprene flux measurements are useful for verifying existing canopy models and exploring other correlations between isoprene fluxes and environmental parameters. Biogenic Emission Models, such as BEIS (Biogenic Emission Inventory System) rely on above canopy environmental parameters and below canopy scaling factors to estimate canopy scale biogenic hydrocarbon fluxes. Other models, which are more complex, are coupled micrometeorological and physiological modules that provide feedback mechanisms present in a canopy environment. These types of models can predict biogenic emissions well, however, the required input is extensive, and for regional applications, they can be cumbersome. This paper presents analyses based on long-term isoprene flux measurements that have been collected since 1999 at the AmeriFlux site located at the University of Michigan Biological Station (UMBS) as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET). The goals of this research were to explore a potential relationship between the surface energy budget (primarily sensible heat flux) and isoprene emissions. Our hypothesis is that the surface energy flux is a better model parameter for isoprene emissions at the canopy scale than temperature and light levels, and the link to the surface energy budget will provide a significant improvement in isoprene emission models. Preliminary results indicate a significant correlation between daily isoprene emissions and sensible heat fluxes for a predominantly aspen/oak stand located in northern Michigan. Since surface energy budgets are an integral part of mesoscale meteorological models, this could potentially be a useful tool for including biogenic emissions into regional atmospheric models. Comparison of measured isoprene fluxes with current BEIS estimates will also be shown as an example of where emission inventories currently stand.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.A51A0042L
- Keywords:
-
- 0315 Biosphere/atmosphere interactions;
- 0365 Troposphere: composition and chemistry;
- 0368 Troposphere: constituent transport and chemistry;
- 3322 Land/atmosphere interactions;
- 3329 Mesoscale meteorology