Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia
Abstract
The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2002
- Bibcode:
- 2002AGUFM.A11A0058L
- Keywords:
-
- 0305 Aerosols and particles (0345;
- 4801);
- 0394 Instruments and techniques