An extension theorem for separately holomorphic functions with singularities
Abstract
Let $D_j\subset\Bbb C^{k_j}$ be a pseudoconvex domain and let $A_j\subset D_j$ be a locally pluripolar set, $j=1,...,N$. Put$$X:=\bigcup_{j=1}^N A_1\times...\times A_{j-1}\times D_j\times A_{j+1}\times...\times A_N\subset\Bbb C^{k_1+...+k_N}.$$Let $U$ be an open connected neighborhood of $X$ and let $M\varsubsetneq U$ be an analytic subset. Then there exists an analytic subset $\hat M$ of the `envelope of holomorphy' $\hat X$ of $X$ with $\hat M\cap X\subset M$ such that for every function $f$ separately holomorphic on $X\setminus M$ there exists an $\hat f$ holomorphic on $\hat X\setminus\hat M$ with $\hat f|_{X\setminus M}=f$. The result generalizes special cases which were studied in \cite{Ökt 1998}, \cite{Ökt 1999}, \cite{Sic 2000}, and \cite{Jar-Pfl 2001}.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- April 2001
- DOI:
- 10.48550/arXiv.math/0104089
- arXiv:
- arXiv:math/0104089
- Bibcode:
- 2001math......4089J
- Keywords:
-
- Mathematics - Complex Variables;
- 32D15;
- 32D10
- E-Print:
- 20 pages