Theoretical and Experimental Status of the Indirect Higgs Boson Mass Determination in the Standard Model
Abstract
The impact of theoretical and experimental uncertainties on the indirect determination of the Higgs boson mass, MH, in the Standard Model (SM) is discussed. Special emphasis is put on the electroweak precision observables MW (the W boson mass) and sin^2(theta_eff) (the effective leptonic mixing angle). The current uncertainties of the theoretical predictions for MW and sin^2(theta_eff) due to missing higher order corrections are conservatively estimated to delta MW \approx 7 MeV and delta sin^2(theta_eff) \approx 7 x 10^5 . Expectations and necessary theoretical improvements for future colliders are explored. Results for the indirect MH determination are presented based on the present experimental and theoretical precisions as well as on improvements corresponding to the prospective situation at future colliders. The treatment of the different future colliders is done in a uniform way in order to allow for a direct comparison of the accuracies that can be reached. Taking all experimental, theoretical, and parametric uncertainties into account, a current upper bound on MH of \sim 200 GeV is obtained. Furthermore we find in a conservative approach that a Linear Collider with GigaZ capabilities can achieve a relative precision of about 8% (or better) in the indirect determination of MH.
 Publication:

arXiv eprints
 Pub Date:
 November 2001
 arXiv:
 arXiv:hepph/0111314
 Bibcode:
 2001hep.ph...11314B
 Keywords:

 High Energy Physics  Phenomenology
 EPrint:
 11 pages, 1 figure, contribution to the P1WG1 report, "Workshop on the Future of Particle Physics", Snowmass, Colorado, USA, July 2001