Abstract Models of Probability
Abstract
Probability theory presents a mathematical formalization of intuitive ideas of independent events and a probability as a measure of randomness. It is based on axioms 1-5 of A.N. Kolmogorov 1 and their generalizations 2. Different formalized refinements were proposed for such notions as events, independence, random value etc., 2,3, whereas the measure of randomness, i.e. numbers from [0,1], remained unchanged. To be precise we mention some attempts of generalization of the probability theory with negative probabilities 4. From another side the physicists tryed to use the negative and even complex values of probability to explain some paradoxes in quantum mechanics 5,6,7. Only recently, the necessity of formalization of quantum mechanics and their foundations 8 led to the construction of p-adic probabilities 9,10,11, which essentially extended our concept of probability and randomness. Therefore, a natural question arises how to describe algebraic structures whose elements can be used as a measure of randomness. As consequence, a necessity arises to define the types of randomness corresponding to every such algebraic structure. Possibly, this leads to another concept of randomness that has another nature different from combinatorical - metric conception of Kolmogorov. Apparenly, discrepancy of real type of randomness corresponding to some experimental data lead to paradoxes, if we use another model of randomness for data processing 12. Algebraic structure whose elements can be used to estimate some randomness will be called a probability set Φ. Naturally, the elements of Φ are the probabilities.
- Publication:
-
Foundations of Probability and Physics
- Pub Date:
- December 2001
- DOI:
- Bibcode:
- 2001fpp..conf..257M