The motor side of depth vision
Abstract
To achieve stereoscopic vision, the brain must search for corresponding image features on the two retinas. As long as the eyes stay still, corresponding features are confined to narrow bands called epipolar lines. But when the eyes change position, the epipolar lines migrate on the retinas. To find the matching features, the brain must either search different retinal bands depending on current eye position, or search retina-fixed zones that are large enough to cover all usual locations of the epipolar lines. Here we show, using a new type of stereogram in which the depth image vanishes at certain gaze elevations, that the search zones are retina-fixed. This being the case, motor control acquires a crucial function in depth vision: we show that the eyes twist about their lines of sight in a way that reduces the motion of the epipolar lines, allowing stereopsis to get by with smaller search zones and thereby lightening its computational load.
- Publication:
-
Nature
- Pub Date:
- April 2001
- DOI:
- 10.1038/35071081
- Bibcode:
- 2001Natur.410..819S