JPEG standard uniform quantization error modeling with applications to sequential and progressive operation modes
Abstract
In this paper we propose a method for computing JPEG quantization matrices for a given meansquare error (MSE) or peak signaltonoise ratio (PSNR). Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired PSNR and/or definition script, reducing cost. First, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints determined by the JPEG standard and visual criteria. Second, we study the JPEG standard progressive operation mode from a quantizationbased approach. A relationship between the measured image quality at a given stage of the coding process and a quantization matrix is found. Thus, the definition script construction problem can be reduced to a quantization problem. Simulations show that our method generates better quantization matrices than the classical method based on scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB. This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of stages and removing small stages that do not contribute during the decoding process with a noticeable image quality improvement.
 Publication:

Journal of Electronic Imaging
 Pub Date:
 April 2001
 DOI:
 10.1117/1.1344592
 Bibcode:
 2001JEI....10..475M