B-DEOS: British Dynamics of Earth and Ocean systems- new approaches for a multidisciplinary ocean observing system in the Atlantic and S Ocean
Abstract
Advances in theoretical understanding of the natural systems in the sea and in the Earth below have been closely associated with new data sets made possible by technological advances. The plate tectonic revolution, the discovery of hydrothermal circulation, and many other examples can be attributed to the application of innovative new technology to the study of the sea. A consortium of research groups and institutions within the United Kingdom is planning a system of multidisciplinary ocean observatories to study the components of, and linkages between the physical, chemical and biological processes regulating the earth-ocean-atmosphere-biosphere system. An engineering feasibility design study has been completed which has resulted in a robust and flexible design for a telecommunications/power buoy system, and a UK NERC Thematic Programme is in the advanced planning stage. Representatives of the US, Japan, France, Portugal, Spain, Germany and other countries have been involved in consultations, and a coordinated international effort is expected to develop throughout the Atlantic and S Oceans, with collaborations extended to observatories operated by cooperating partners in other regions. The B-DEOS observatory system is designed to allow studies on scales of order cm to 1000 km, as well as to supplement on larger spatial scales the emerging global ocean and seafloor solid earth observatory network. The facility will make it possible to obtain requisite long-term synoptic baseline data, and to monitor natural and man-made changes to this system by: 1) Establishing a long-term, permanent and relocatable network of instrumented seafloor platforms, moorings and profiler vehicles, provided with power from the ocean surface and internal power supplies, and maintaining a real- or near-real time bidirectional Internet link to shore. 2) Examining the time varying properties of these different environments (solid earth, ocean, atmosphere, biosphere), exploring the links between them and the causes of the variability. 3) Developing appropriate methods of acquiring data in real-time, assimilating them into mathematical models of the solid earth, oceans, and air-ocean interface, and promoting interpretation of these data for a truly synoptic understanding of the linked earth-ocean-atmosphere-biosphere system and its components. Large scale multidisciplinary observatories (each comprising an area of at least 200 km by 50 km) have been proposed for areas centred on the S Reykjanes Ridge, the region of the Drake Passage and the Scotia Sea, and (particularly in concert with partners throughout the EU) the MOMAR area of the Lucky Strike Segment, MAR. Technical aspects of the observatory infrastructure, and the scientific rationale for extended deployments at these sites will be presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2001
- Bibcode:
- 2001AGUFMOS31D..07S
- Keywords:
-
- 9805 Instruments useful in three or more fields;
- 9820 Techniques applicable in three or more fields