Inclusions of Hydrocarbons and Fullerenes in Diamond: Implications for Origin of Colors in Diamond
Abstract
Diamonds from primary deposits of worldwide localities are mostly of industrial grade, i.e., they are flawed and non-transparent, not suitable for use as gems. Because of their overwhelming abundance and multi-faceted characteristics, they make superb samples for scientific research. Compared with perfect stones, they are more likely to yield usefu; information on how diamonds form in nature, and physicochemical states of Earth's interior. Diamonds of Pipe 50 in Fuxian, Liaoning, China come in various colors: grey, colorless, black, brown, pink, buff, yellow, green, approximately in decending order of abundance. The rarest are red and magenta diamonds, but a few of the latter emerge regularly on a yearly basis. We report here results of our research on magenta diamonds. By infrared spectroscopy, we identified liquid and gas inclusions of a complex mixture of saturated and unsaturated hydrocarbons (alkanes and alkenes), saturated carbonyl hydrocarbons (alkyl ketones), as well as C-60 fullerene molecules. The origin of magenta color is possibly linked to the inclusions, because C-60 in an organic solvent gives a megenta solution. When C-60 in solution is exposed to light, ultraviolet radiation, or heat (200° C), it degrades in a matter of days, and precipitates reddish, brown, buff materials, and amorphous carbon. In natural diamonds, progressive degradation of fullerene inclusions might yield pink, brown, buff, grey, and black diamonds, dependent on annealing temperatures and residence time in Earth's mantle.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2001
- Bibcode:
- 2001AGUFM.V12C1003L
- Keywords:
-
- 1025 Composition of the mantle;
- 3625 Descriptive mineralogy;
- 3640 Igneous petrology