Practical Applications for Earthquake Scenarios Using ShakeMap
Abstract
In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion estimates that will substantially improve over empirical relations at these frequencies will require developing cost-effective numerical tools for proper theoretical inclusion of known complex ground motion effects. Current efforts underway must continue in order to obtain site, basin, and deeper crustal structure, and to characterize and test 3D earth models (including attenuation and nonlinearity). In contrast, longer period synthetics (>2 sec) are currently being generated in a deterministic fashion to include 3D and shallow site effects, an improvement on empirical estimates alone. As progress is made, we will naturally incorporate such advances into the ShakeMap scenario earthquake and processing methodology. Our scenarios are currently used heavily in emergency response planning and loss estimation. Primary users include city, county, state and federal government agencies (e.g., the California Office of Emergency Services, FEMA, the County of Los Angeles) as well as emergency response planners and managers for utilities, businesses, and other large organizations. We have found the scenarios are also of fundamental interest to many in the media and the general community interested in the nature of the ground shaking likely experienced in past earthquakes as well as effects of rupture on known faults in the future.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2001
- Bibcode:
- 2001AGUFM.S32D..01W
- Keywords:
-
- 7212 Earthquake ground motions and engineering