Chemistry and Mineralogy of Rock Surface Coatings from Terrestrial Hot and Dry Deserts
Abstract
Coatings form on rocks in terrestrial hot and dry deserts that are chemically, mineralogically, and texturally distinct from the underlying rock. They are composed of mixtures of aeolian-derived particles, primarily clays, cemented by authigenic Mn-Fe-bearing materials. The coatings are characteristically laminated at the nanometer to micron scale, with Mn-Fe oxide-rich layers alternating with silicate-rich layers. The junction between the coating and the rock is generally sharp. The laminated coatings form on all rock types, even quartz, although its thickness is usually greatest on Fe-rich rocks. Manganese-rich coatings of 5 microns thickness or less impart a black color to the rock. High resolution TEM (HRTEM) images of the coatings show a predominance of thin clay-like flakes and aggregates of tissue-like particles, with lesser amounts of rounded crystalline grains. Most clay particles exhibit 001 spacings of 10, 12 Å, and intermediate spacings, typical of mica, smectite, and mixed-layer mica-smectite minerals. Many of the Mn-bearing particles have lattice spacings between 5.5 and 7 Å, visible at the edges of folded flakes. These spacings are consistent with a phyllomanganate-like structure, similar to birnessite. The lower values measured in the TEM are consistent with collapse of the layers in the vacuum of the TEM. Also present are occasional elongated Mn-rich particles with a ca. 10 Å spacing consistent with todorokite. Four distinct Mn-rich materials were recognized: (a) Discrete, elongated Ca-Ba-rich Mn-oxides. (b) Tissue-like aggregates with minor Fe and Ba. (c) Fluffy Mn-Fe-rich coatings on clays. (d) An anhedral Mn-Fe spinel-like mineral. Nanometer-sized C aggregates were occasionally encountered in the coatings. These particles contain variable, minor amounts of K, N, and O, as revealed by electron energy-loss spectroscopy (EELS). Their small sizes and the occurrence of K in some of the particles is consistent with C derived from biomass burning. The Rutherford Backscattering spectroscopy (RBS) spectra exhibited an intense C peak from the surface of the varnish. Occasional C-rich particles are present, which are of possible fungal or bacterial origin.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2001
- Bibcode:
- 2001AGUFM.P51A..11G
- Keywords:
-
- 0330 Geochemical cycles;
- 1020 Composition of the crust;
- 1060 Planetary geochemistry (5405;
- 5410;
- 5704;
- 5709;
- 6005;
- 6008);
- 1615 Biogeochemical processes (4805)