Sampling errors for a nadir viewing instrument on the International Space Station
Abstract
In an effort to improve the observational charactarization of ice clouds in the earth's atmosphere, we are developing a sub-millimeter wavelength radiometer which we propose to fly on the International Space Station for two years. Our goal is to accurately measure the ice water path and mass-weighted particle size at the finest possible temporal and spatial resolution. The ISS orbit precesses, sampling through the dirunal cycle every 16 days, but technological constraints limit our instrument to a single pixel viewed near nadir. We discuss sampling errors associated with this instrument/platform configuration. We use as "truth" the ISCCP dataset of pixel-level cloud optical retrievals, which acts as a proxy for ice water path; this dataset is sampled according to the orbital characteristics of the space station, and the statistics computed from the sub-sampled population are compared with those from the full dataset. We explore the tradeoffs in average sampling error as a function of the averaging time and spatial scale, and explore the possibility of resolving the dirunal cycle.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2001
- Bibcode:
- 2001AGUFM.A52C..07B
- Keywords:
-
- 3309 Climatology (1620);
- 3360 Remote sensing