High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors
Abstract
We present simulations and performance results of nuclear burning fronts in supernovae on the largest domain and at the finest spatial resolution studied to date. These simulations were performed on the Intel ASCI-Red machine at Sandia National Laboratories using FLASH, a code developed at the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. FLASH is a modular, adaptive mesh, parallel simulation code capable of handling compressible, reactive fluid flows in astrophysical environments. FLASH is written primarily in Fortran 90, uses the Message-Passing Interface library for inter-processor communication and portability, and employs the PARAMESH package to manage a block-structured adaptive mesh that places blocks only where the resolution is required and tracks rapidly changing flow features, such as detonation fronts, with ease. We describe the key algorithms and their implementation as well as the optimizations required to achieve sustained performance of 238 GLOPS on 6420 processors of ASCI-Red in 64-bit arithmetic.
- Publication:
-
Proceedings of SC2000
- Pub Date:
- 2000
- Bibcode:
- 2000sc00.conf.....C
- Keywords:
-
- AMR;
- hydrodynamics;
- detonation;
- scaling;
- adaptive mesh refinement;
- reactive flow