Precise Magnetic Structures of Hard Ferromagnets of ND2FE14B Type as Determined at Low Temperature from Single Crystal Neutron Diffraction
Abstract
The main constituent of the hard magnet materials Nd-Fe-B is the prototype of a new ferromagnet series, the Nd2Fe14B type (Space Group P42/nmm). Such compounds are characterised by high magnetocrystalline anisotropy parameters, those of rare earth origin being several times higher than the contribution of the iron subblattices. In many cases, these two contributions exhibit markedly different thermal behaviours, resulting in spin rotation phenomena or (and) lowering of the crystalline and the magnetic symmetry from the tetragonal high temperature state. Low temperature very precise studies on selected compounds of the series R2Fe14B with R = Nd, Ho, Er and Y, were undertaken by using neutron four circle diffractometry on single crystals. When temperature is lowered, the two first compounds exhibit a continuous spin reorientation within the [110] plane from the c-axis at high temperature towards an intermediate direction. The Er compound presents a first order transition around 350K where the resulting magnetisation first order rotates from the c-axis a high temperature to the a basal plane direction at low temperature. The last one compound remains c-easy axis in the whole temperature range. From our neutron diffraction experiments, lowering of the crystal symmetry to monoclinic (orthorhombic) space groups was precisely measured for the two first (third) samples. Besides marked deviations to collinearity affect the different sublattice magnetisations. Yet, these well marked phenomena have not been accounted for in the hundert experimental and theoretical analysis dedicated to the series. However, our results are in good agreement with a detailed 57Fe Mössbauer spectroscopy analysis of the Ho ternary hydrides.
- Publication:
-
Magnetic and Superconducting Materials
- Pub Date:
- September 2000
- DOI:
- Bibcode:
- 2000mcm..conf..991W