The environments of poor clusters of galaxies
Abstract
Poor clusters of galaxies are fundamental cosmological structures, but have received relatively little attention compared to rich, Abell clusters. In order to fully understand galaxy clustering, we must examine galaxy associations of all masses and richness levels. We have therefore undertaken an X-ray, optical, and radio investigation of the environments of poor clusters, in order to understand how their galaxies, radio sources, and intracluster media influence and interact with one another. To examine the global properties of poor clusters as observed in these three wavelength regimes, we have utilized three major sky surveys: the ROSAT All-Sky Survey, the Digitized Sky Survey, and the NRAO VLA Sky Survey. For the purposes of this study, we construct a complete, volume-limited sample of 306 poor clusters in the redshift range 0.01--0.03. We compute the X-ray luminosity function (XLF) of poor clusters and compare to XLFs of nearby, rich, Abell clusters. We also compute the bivariate radio luminosity function (BRLF), which is the fraction of radio-loud galaxies of a given optical magnitude. Higher richness clusters produce increased AGN activity in M* galaxies. We find that only clusters with an elliptical as their dominant galaxy possess an ICM. This implies that the presence of a dominant elliptical at the center of a poor cluster is more closely linked to the presence of an ICM than the overall morphological mix of the cluster galaxies. We also find a strong anti-correlation between richness and the fraction of starburst radio galaxies in poor clusters. There may be two factors which contribute to this anti-correlation. For richer clusters, the ICM density may be sufficiently strong that it can strip gas from starforming galaxies, thereby reducing the level of star formation in richer systems. Conversely, the poorest clusters contain higher galaxy compactness, which results in smaller nearest-neighbor distances between galaxies. These smaller galaxy separations, combined with the lower velocity dispersions, create significant tidal interactions, which may generate enhanced star formation activity. Therefore star formation efficiency may be reduced in richer clusters via ram-pressure stripping, and is enhanced in poorer clusters due to galaxy interactions. (Abstract shortened by UMI.)
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 2000
- Bibcode:
- 2000PhDT.......225B