Amplification of dopaminergic signaling by a positive feedback loop
Abstract
Dopamine and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32) plays an obligatory role in most of the actions of dopamine. In resting neostriatal slices, cyclin-dependent kinase 5 (Cdk5) phosphorylates DARPP-32 at Thr-75, thereby reducing the efficacy of dopaminergic signaling. We report here that dopamine, in slices, and acute cocaine, in whole animals, decreases the state of phosphorylation of striatal DARPP-32 at Thr-75 and thereby removes this inhibitory constraint. This effect of dopamine is achieved through dopamine D1 receptor-mediated activation of cAMP-dependent protein kinase (PKA). The activated PKA, by decreasing the state of phosphorylation of DARPP-32-Thr-75, de-inhibits itself. Dopamine D2 receptor stimulation has the opposite effect. The ability of activated PKA to reduce the state of phosphorylation of DARPP-32-Thr-75 is apparently attributable to increased protein phosphatase-2A activity, with Cdk5 being unaffected. Together, these results indicate that via positive feedback mechanisms, Cdk5 signaling and PKA signaling are mutually antagonistic.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- November 2000
- DOI:
- Bibcode:
- 2000PNAS...9712840N
- Keywords:
-
- Neurobiology