Accurate prediction of the thermodynamic properties of fluids in the system H _{2}OCO _{2}CH _{4}N _{2} up to 2000 K and 100 kbar from a corresponding states/one fluid equation of state
Abstract
Previously, we reported an equation of state (EOS) modeling approach that successfully calculated the PVTX properties of supercritical fluid mixtures. The model is based on a corresponding states assumption applied to a highly accurate EOS for the reference CH _{4} system. The CH _{4} EOS was parameterized from 273 to 723 K and 1 to 3000 bar by using experimental PVT data. Molecular dynamics simulated PVT data were used to extend the parameterization in the CH _{4} system to 2000 K and 20 kbar. Mixing in the H _{2}OCO _{2}CH _{4}N _{2} system was successfully described by using a simple empirical mixing rule with only two temperature and pressureindependent parameters for each binary mixture. Results indicated that PVTX properties in higher order systems could be reliably calculated without additional parameters. In this paper, by using experimental PVTX data in the H _{2}OCO _{2}CH _{4}N _{2} system that were not used in the EOS parameterization, we show that the model predictions are accurate from just above the critical temperature for the least volatile component to 2000 K and from 0 to 100 kbar. We also show that our modeling approach can be extended to reliably calculate supercritical phase equilibria and other thermodynamic properties, such as fugacity and enthalpy, under hightemperature and pressure conditions.
 Publication:

Geochimica et Cosmochimica Acta
 Pub Date:
 March 2000
 DOI:
 10.1016/S00167037(99)003683
 Bibcode:
 2000GeCoA..64.1069D