Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation
Abstract
The atmospheric circulation over the Bolivian Altiplano during composite WET and DRY periods and during HIGH and LOW index phases of the Southern Oscillation was investigated using daily radiosonde data from Antofagasta (Chile), Salta (Argentina), Lima (Peru) and La Paz (Bolivia), daily precipitation data from the Bolivian/Chilean border between 18° and 19°S and monthly NCEP (National Centers for Environmental Prediction) reanalysis data between 1960 and 1998. In austral summer (DJF) the atmosphere during WET periods is characterized by easterly wind anomalies in the middle and upper troposphere over the Altiplano, resulting in increased moisture influx from the interior of the continent near the Altiplano surface. The Bolivian High is intensified and displaced southward. On the other hand, westerly winds usually prevail during DRY summer periods, preventing the moisture transport from the east from reaching the western Altiplano. Precipitation tends to be deficient over the western Bolivian Altiplano during LOW index summers and above average during HIGH and LOW+1 summers, but the relation is weak and statistically insignificant. LOW summers feature broadly similar atmospheric circulation anomalies as DRY periods and can be regarded as an extended DRY period or as a summer with increased occurrence of DRY episodes. HIGH summers, and to a lesser degree LOW+1 summers, are characterized by broadly opposite atmospheric characteristics, featuring a more pronounced Bolivian High located significantly further south, and easterly wind anomalies over the Altiplano. In winter (JJA) precipitation events are rare; these are associated with increased northerly and westerly wind components, reduced pressure and temperature, and increased specific humidity over the entire Altiplano. Atmospheric circulation anomalies during LOW periods are less pronounced in austral winter (JJA) than in summer, but generally feature similar changes (increased temperatures and a vertically expanded troposphere). However, the significance of these anomalies, especially with regard to the wind pattern, varies depending on station and pressure level. Accordingly, precipitation during austral winter shows no relationship with the extremes of the Southern Oscillation.
- Publication:
-
International Journal of Climatology
- Pub Date:
- November 1999
- DOI:
- 10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N
- Bibcode:
- 1999IJCli..19.1579V
- Keywords:
-
- Altiplano;
- precipitation;
- Southern Oscillation;
- composite analysis