Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence
Abstract
The placozoan Trichoplax adhaerence is one of the most primitive multi-cellular organisms, and moves about accompanying perpetual changes in its shape. Changes in position, locomotion velocity and the outer shape of the organism were monitored quantitatively with use of a computer image analysis, and their dynamic patterns in free locomotion and upon feeding were analyzed in terms of non-linear dynamics. The organism changed its behavioral patterns discontinuously in response to various concentrations of yeast extracts (food). (1) At low concentrations, the organism moved fast with perpetual random changes in shape. Both locomotion velocity and shape changes exhibited 1/f fluctuations. (2) At high concentrations, the shape of the organism as well as the locomotion exhibited oscillations with periods of about 8 min. These limit cycle oscillations bifurcated into the period 2 at the highest concentration tested. The organism flattened more strongly and the locomotion was more reduced on the whole at higher concentrations. (3) At the intermediate concentrations, two patterns as monitored above appeared: one pattern continued for a while and switched to the other abruptly. (4) The average square displacement of the organism increased linearly with time in all cases, indicating that the locomotion is a Brownian movement. In this way, the feeding behaviors by the placozoan are organized as successive co-operative transitions among non-linear dynamic states.
- Publication:
-
BioSystems
- Pub Date:
- 1999
- DOI:
- Bibcode:
- 1999BiSys..54...65U
- Keywords:
-
- Placozoan;
- Trichoplax;
- Feeding behavior;
- Nonlinear dynamics