From a Discrete to Continuous Description of Two-Dimensional Curved and Homogeneous Clusters: Some Kinetic Approach
Abstract
Starting with a discrete picture of the self-avoiding polygon embeddable in the square lattice, and utilizing both scaling arguments as well as a Steinhaus rule for evaluating the polygon's area, we are able, by imposing a discrete time-dynamics and making use of the concept of quasi-static approximation, to arrive at some evolution rules for the surface fractal. The process is highly curvature-driven, which is very characteristic of many phenomena of biological interest, like crystallization, wetting, formation of biomembranes and interfaces. In a discrete regime, the number of subunits constituting the cluster is a nonlinear function of the number of the perimeter sites active for the growth. A change of the number of subunits in time is essentially determined by a change in the curvature in course of time, given explicitly by a difference operator. In a continuous limit, the process is assumed to proceed in time in a self-similar manner, and its description is generally offered in terms of a nonlinear dynamical system, even for the homogeneous clusters. For a sufficiently mature stage of the growing process, and when linearization of the dynamical system is realized, one may get some generalization of Mullins-Sekerka instability concept, where the function perturbing the circle is assumed to be everywhere continuous but not necessarily differentiable, like e.g. , the Weierstrass function. Moreover, a time-dependent prefactor appears in the simplified dynamical system.
- Publication:
-
Acta Physica Polonica B
- Pub Date:
- August 1999
- Bibcode:
- 1999AcPPB..30.2571G