Quantum computations: algorithms and error correction
Abstract
Contents §0. Introduction §1. Abelian problem on the stabilizer §2. Classical models of computations2.1. Boolean schemes and sequences of operations2.2. Reversible computations §3. Quantum formalism3.1. Basic notions and notation3.2. Transformations of mixed states3.3. Accuracy §4. Quantum models of computations4.1. Definitions and basic properties4.2. Construction of various operators from the elements of a basis4.3. Generalized quantum control and universal schemes §5. Measurement operators §6. Polynomial quantum algorithm for the stabilizer problem §7. Computations with perturbations: the choice of a model §8. Quantum codes (definitions and general properties)8.1. Basic notions and ideas8.2. One-to-one codes8.3. Many-to-one codes §9. Symplectic (additive) codes9.1. Algebraic preparation9.2. The basic construction9.3. Error correction procedure9.4. Torus codes §10. Error correction in the computation process: general principles10.1. Definitions and results10.2. Proofs §11. Error correction: concrete procedures11.1. The symplecto-classical case11.2. The case of a complete basis
Bibliography- Publication:
-
Russian Mathematical Surveys
- Pub Date:
- December 1997
- DOI:
- 10.1070/RM1997v052n06ABEH002155
- Bibcode:
- 1997RuMaS..52.1191K